

Advanced Boron and Metal Loaded High Porosity Carbons

T. C. Mike Chung

(Other Members in PSU Team: Vince Crespi, Peter Eklund, Hank Foley)

The Pennsylvania State University
April 18, 2008

Project ID#: STP 11

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: 2/1/05
- Project end: 1/31/10
- % complete: 60%

Budget

- Total funding for PSU team
 - DOE share: \$1.2M
 - Contractor share: \$0.3M
- FY06 \$ 225,000
- FY07 \$ 333,000

Partners

 Dispersed throughout HSCoE: NIST (neutron), NREL (TPD), Air Products (vol. ads.), UNC (NMR)

Barriers

- A: System Wt & Vol: Hydrogen volumetric (1.5 kWh/L) and gravimetric (6wt%) storage density goals for 2010
- B: System Cost: High-volume low-cost synthesis routes (via pyrolysis, arc)
- <u>C:</u> Energy Efficiency: Low pressure, moderate temperature operation (via enhanced binding energy through chemical modification)
- E: Charge/discharge rate: via Mixed micro/mesopore structures through precursor design
- <u>J:</u> Thermal management: via designed moderate binding energies of mixed physi/chemi-sorption
- P: Improved understanding: via calculations in close coupling with fundamental measurements on well-characterized, well-ordered systems

Project Objectives and Approaches

6 wt% H_2 storage goal by increasing binding energy (10-30 kJ/mol) and SSA (> 2000 m²/g)

Micro-porous

<u>B Substitution C</u>

(B/C) Materials

Microporous <u>Metal Intercalation</u> M/B/C Materials

B in C Structures

- ✓ Lightness of Boron
- ✓ Enhancing H₂ interaction
- ✓ No serious structural distortions
- ✓ Catalyzing carbonization
- ✓ Stabilizing atomic metal

Project Activities and Schedule

FY06

- Developing synthesis routes and processes to prepare B/C (B-substitution) materials.
- Characterizing new B/C materials and structure-property-H₂ adsorption relationship.

FY07

- Synthesizing the desirable B/C materials with high B content and high SSA, and their H₂ adsorption.
- Investigating synthesis routes to prepare atomic metal dispersion (M-intercalation) in B/C materials.

FY08

- Synthesizing the desirable B/C and M/B/C materials with B content (>10 mol%), M content (>3 mol%), and SSA (>2000 m²/g).
- Studying structure-property relationship.

Synthesis of B/C Materials by B-containing Precursors

PBDA
$$\stackrel{\text{Cl}}{-\text{B}} = C = C - \stackrel{\text{Cl}}{-\text{B}} = \frac{Cl}{\sqrt{C}}$$

$$\frac{Cl}{C} = \frac{Cl}{\sqrt{C}} = \frac{Cl}{\sqrt{C}$$

- Conjugated B-C bonds
- Reactive B-CI for stabilization

- Simple process
- Large scale production
- Varying pyrolysis temp.
- Control Crystal structure
- Control B content (up to 10%)

Synthesis of Micro-porous C/B Material

$$Li^{+} - C \equiv C - \left(- C \equiv C^{-+} Li \right)$$

$$BCl_{3} \downarrow$$

$$Cl \downarrow C \equiv C - \left(- C \equiv C - B \right) \downarrow X$$

$$(+ LiCl) \downarrow B/C = 1/10$$

$$\Delta \downarrow$$

Pyrolysis temp. (°C)	B content ^a (wt%)	B content ^b (wt%)	Surface area ^c (m²/g)
600	7.2	7.6	780
800	5.7	7.1	528
1500	3.8	3.0	33

- a. Prompt Gamma-ray Activation Analysis (NIST).
- b. ¹¹B MAS-NMR measurement (UNC).
- c. BET method using N_2 gas at liquid N_2 .

Micro-porous B/C

Solid State 11B MAS-NMR spectra of B/C materials

(a) 150, (b) 600, (c) 800, (d) 1000 °C

Yue Wu (UNC) and Mike Chung

XRD Patterns of C/B materials

800°C

1500°C

1800°C

2100°C

2300°C

Evolution of B/C Sructure during Pyrolysis

1000 °C

>1500 °C

B/C materials with various B site structures that are controlled by pyrolysis temperatures

Hydrogen Uptake in Micro-porous B/C (SSA: 780 m²/g)

- Initial heat of adsorption for the B/C material is <u>12.47 kJ/mol</u>
- About 2 times H₂ adsorption capacity (vs. C having similar SSA)

¹H NMR spectrum of H₂ Gas in Porous B/C Material

Peak 1 and peak 2&3 depend linearly on pressure as expected for free H_2 gas Peak 4 shows nonlinear pressure dependence. Using the Langmuir equation, an estimate of binding energy E_{ads} =11 kJ/mol.

Boron significantly enhances H₂ binding energy

Metal-loading in B/C Materials

Pt(0) particles in C material

B/C material

Zr/B/C Material

Comparison of Metal Loading onto C and B/C Materials

Metal Containing Reagents	Activated C (200 mg, 600 m ² /g)	B/C Material (200 mg, 500 m ² /g)
	After metal loading	After metal loading
	(mg)	(mg)
H ₂ PtCl ₆ ^a	230	234
Cp ₂ TiCl ₂ ^b	200	309
$Cp*_{2}ZrCl_{2}^{b}$	205	222
$[(n^5-Cp^*)SiMe_2(n^1-NCMe_3)]TiCl_2^b$	203	272

- a. Loading in surfactant/water emulsion
- b. Loading in toluene solvent (without surfactant)

Substitutional B in C structure enhances metal intercalation

High resolution TEM Image of Zr/B/C Material

B/C Material with Cp*₂ZrCl₂

Zr/B/C Material

Wave-like B/C structure

Uniform Zr particles (size < 2nm)

Intercalating uniform metal nanoparticles without surfactant

Pressure (bar)

Summary

- Micro-porous B/C Materials (B ~8%, SSA ~800 m²/g)
 has been prepared by B-precursor and pyrolysis
- B/C Structure Changes with Pyrolysis Temp
 B moiety gradually immerses in graphitic structure
- B/C Shows H₂ Binding Energy (~12 KJ/mol) and Double Adsorption Capacity (vs. C)
- New M/B/C Materials Have Been Prepared with Intercalated Nano-Metal Particles

Future Work

Year 08

- Increase Surface Area of B/C Materials
 H₂ adsorption could reach 6 wt% if B/C material would contain > 10% B and >2000 m²/g
- Increase Binding Energy of M/B/C Materials
 H₂ adsorption at ambient temperature requires
 higher binding energy (15-30 KJ/mole)
 Finding right M species
 Well-dispersed metal atoms or neat atomic particles
- Spill-over on M/B/C Materials